mrpeg.peg.infer_peg(beta: Array | ndarray | bool_ | number | bool | int | float | complex, se: Array | ndarray | bool_ | number | bool | int | float | complex, eqtl: Array | ndarray | bool_ | number | bool | int | float | complex, perturb: Array | ndarray | bool_ | number | bool | int | float | complex, ld: Array | ndarray | bool_ | number | bool | int | float | complex, perm_number: int = 500, seed: int = 12345, alt: bool = False) Array[source]

The main inference function for running SuShiE.

Parameters:
beta: Array | ndarray | bool_ | number | bool | int | float | complex

ArrayLike. GWAS effect sizes.

se: Array | ndarray | bool_ | number | bool | int | float | complex

ArrayLike. The vector of the inverse of GWAS Standard error

eqtl: Array | ndarray | bool_ | number | bool | int | float | complex

ArrayLike. eQTL Z scores.

perturb: Array | ndarray | bool_ | number | bool | int | float | complex

ArrayLike. Perturbation effect size matrix.

ld: Array | ndarray | bool_ | number | bool | int | float | complex

ArrayLike. The LD matrix.

perm_number: int = 500

int = 500. The number of permutations.

seed: int = 12345

int = 12345,

alt: bool = False

bool = False. Whether to use the alternative distribution assumption.

Returns:

A numpy array containing the inference results.

Return type:

mrpegResult